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As a first stage in the development of a suitable molecular orbital method for treating inorganic 
systems, we consider the possible integral approximations that may be made to reduce the complexity 
of the computation. The significance of invariance of the approximations to different transformations 
is discussed and the effect of various levels of neglect of differential overlap is analysed by the S-expansion 
technique. A method - the many-centre ZDO method - that is computationally feasible but contains 
more information than the widely used CNDO approximation is given particular consideration. 

Als erste Stufe in der Entwicklung einer geeigneten Molekular-orbital-Methode ftir die Behandlung 
anorganischer Systeme untersuchen wir mSgliche Integralniiherungen, die geeignet sind, die Berech- 
nungen zu vereinfachen. Die Bedeutung der Invarianz der Ngherungen unter verschiedenen Trans- 
formationen wird diskutiert und der EinfluB verschiedener Stufen der Vernachl~issigung der differen- 
tiellen ~)berlappung wird mit der S-Entwicklungstechnik analysiert. Einer Methode, der Vielzentren- 
ZDO-Methode, die rechnerisch gut durchffihrbar ist, aber mehr an Information enthiilt als die meistens 
benutzte CNDO-N~iherung, wird besondere Beachtung geschenkt. 

Dans une premi6re 6tape lors du d6veloppement d'une m~thode d'orbitales mol~culaires convenant 
aux systbmes inorganiques, nous envisageons les approximations possible pour les int~grales. On 
discute la signification de l'invariance des ces approximations par rapport ~ diff~rentes transformations 
et l'on analyse par la technique du d6veloppement en S l'effet des diff6rents niveaux d'approximation 
du recouvrement diff6rentiel nul. On consid6re en particular une m6thode - la m6thode ZDO poly- 
centrique- qui s'avbre r~alisable num6riquement.tout en contenant plus d'information que l'approxima- 
tion CNDO couramment utilis~e. 

1. General Approach 

Increasing attention has been paid by theoretical chemists in recent years 
to the possibilities and problems of devising reliable theoretical methods for use 
in the investigation of inorganic molecules. Recent calculations in our laboratory, 
the first of which have been published, [-1, 2] have indicated that important 
difficulties remain in carrying out this task. These difficulties become especially 
apparent when molecules containing elements of the second row of the Periodic 
Table or transition metal complexes are considered, but apply also to first row 
molecules. In this and subsequent papers we attempt to clarify the situation in 
this field through a systematic analysis of the theoretical factors involved. 

The aim is to develop a treatment that is reliable enough to give definitive 
answers to some of the current controversies - assignment of UV spectra, the role 
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of d-orbitals in bonding, the influence of ligand properties on the properties of 
transition metal complexes, etc. - yet simplified by using a series of approxi- 
mations. Only in this way can larger inorganic molecules be treated with our 
present computing facilities. For example, if no approximations are made, the 
number of unique electron repulsion integrals needed for an ab initio molecular 
orbital calculation of the sulphate anion would be 94,830 (and without including 
sulphur 3d-orbitals)! How approximate the methods need to be so that they 
are at once manageable and give meaningful answers, remains an open question 
for the moment. 

In the present paper we shall survey those methods that have been suggested 
hitherto - approximations for drastically reducing the number of two-electron 
integrals, such as neglecting differential overlap - and that might prove fruitful 
for application to systems where the valence orbitals include d-orbitals and the 
principal quantum number may range up to four. Although some form of each 
of these approximations has been described previously our purpose here is to 
scrutinise these again from first principles and particularly to set out approxi- 
mations for the one-electron terms in the Hartree-Fock matrix elements that 
are theoretically compatible with the approximations invoked for the two-electron 
terms. 

In Part II the various parameter schemes that have been suggested will be 
reviewed to decide which are most appropriate and consistent with the various 
approximate SCFMO schemes described in Part I. Part III will present exploratory 
calculations on the sulphate ion designed to test numerically the various approxi- 
mations described in Part I and the various parameter schemes considered in 
Part II. 

A review of previous comparable work and some commentary on it is given 
in the concluding section of the present paper. 

2. The Basic Framework 

The LCAOMO approach adopted here involves the Hartree-Fock approxi- 
mation, whereby each electron is placed in an average field of the nuclei and other 
electrons. However if answers of chemical accuracy for energy quantities, such as 
binding energy and electronic spectra, are to be obtained, electron correlation 
has to be taken into account. In later papers, it is shown how the Sinano~lu many- 
electron theory of atoms and molecules [3-5] provides a way of doing this for 
approximate methods. Accordingly we consider that the exact many-electron 
wave function ~ may be divided into Hartree-Fock (~nF) and electron correlation 
(~ .... ) parts: 

= ~r~F + ~o. (1) 

and that each part for the moment may be treated separately. 
Here we are concerned only with various approximations to ~HF and leave 

to subsequent discussion possible refinements to these approximations together 
with the treatment of ~b .... - 
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The secular equation in the LCAOMO approximation, then is (Roothaan [6]) 

F C  = SCe, (2) 

which we designate "the secular equation in a full overlap basis", giving rise to 
"full overlap methods". 

We also make use of the "secular equation in a L6wdin basis", of orthogonalized 
atomic orbitals, (L6wdin [7], Slater [8]) the transformation: 

C = S - ~ C  (3) 

leading to the equation 

where 

~FXC = XCe (4) 

"~F = S-�89 F S  -~.  (5) 

As detailed below and in accord with the experience of re-electron theory for 
organic molecules [9], this gives rise to "zero differential overlap methods", 
whereby certain integrals involving differential overlap become small enough 
to be neglected. 

General elements of the ttamiltonian matrix F over atomic orbitals Zu, )~ 
are given in terms of elements of the core Hamiltonian matrix H and repulsion 
integrals written in the usual way 1: 

F,v = H,.  + ~ P~ [(#v 12a) - �89 [20] (6) 

In re-electron theory, the zero differential overlap (ZDO) approximations 
are applied: 

S.~ = 6u~, (7 a) 

(#vl20-)=0 unless # = v  and 2=0-.  (7b) 

Here 6u~ is the Kronecker 6. Fischer-Hjalmars [9] and others have pointed out 
that the Hamiltonian matrix formed under the ZDO approximations, F zD~ 
obeys the relation: 

F zDO ~ ;tF (8) 

3. The Development of all Valence Electron Methods 

The invariance properties of the many-electron wave function in the LCAOMO 
approximation have been used recently by Pople, Santry, and Segal [10-12] in 
establishing criteria for approximate methods for molecules. From these criteria 
it is possible to develop a number of methods of varying complexity. We may 
consider these methods in terms of the difficulty of using them in practical calcu- 
lations, the information that could be obtained from their results, and their 
degree of approximation. An S-expansion technique, similar to the Fischer- 
Hjalmars expansion technique of 1r-electron theory [9], proves useful for the latter 
task. 

Notation: ~IZ* (1))~*(2)flz ~ Zv(1)Z~(2) dr1 dr2 ~ (#v I,~) -= (~,~ I ~i:~ [v~>; (~ I vv) -= 7~. 
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3.1 Invariance Criteria 

Roothaan [6] has shown that the total energy and eigenvalues for the secular 
equation (2) are invariant both to an orthogonal transformation of the filled 
molecular orbitals 4, among themselves, and to a similar transformation of the 
basic atomic orbitals ~ among themselves. 

Pople, Santry, and Segal [10] and Ruttink [13-1 discussed the latter orthogonal 
transformation 

Z'= ~T 

in relation to integral approximations that might be made in approximate SCF 
calculations. They considered it essential that any approximations made should 
be such that the calculated total energy remained invariant with respect to rotations 
of local axes (i. e. transformations in which, for example, the set of three p-orbitals 
on an atom are mixed). Subsequently Dewar and Klopman [14] used an approxi- 
mation that did not quite conform to this criterion and found negligible variation 
of calculated energy upon rotation of local axes. However a potentially more 
serious flaw is apt to arise if this rotational invariance criterion is neglected 
when calculating the energies of electronic states belonging to degenerate repre- 
sentations of the point group for highly symmetrical systems, namely [1] sub- 
stantial deviations from the requisite degeneracies for such states. 

Thus in view of this need to preserve an appropriate invariance to at least 
some categories of orthogonal transformations, the following appear to be the 
only acceptable alternatives on which to set up approximations for various 
integrals over the basis functions, Z: 

i) The approximations may be developed relative to a standard set of axes. 
If a new set is chosen, or if hybrid or symmetry orbitals are used as a basis set, the 
approximations no longer apply. 

ii) Approximations invariant to rotations of the local axes may be set up. 
If a new set of local axes is chosen, the same approximations still apply, but if 
a new basis set of hybrid or symmetry orbitals is used, they no longer apply. 

iii) The approximations may be developed invariant to any local orthogonal 
transformation. In this case they would apply in a basis of atomic orbitals for 
any orientation of the local axes, and in a basis of hybrid orbitals, but not for a 
basis of symmetry orbitals. This is the criterion used by Pople, Santry, and Segal 
[10, 11]. 

iv) Approximations invariant to a general orthogonal transformation appli- 
cable for any choice of basis orbitals, may be considered, but would involve the 
inclusion of all integrals. 

3.2. Partitioning of the Hamiltonian Matrix 

If cases (i), (ii) or (iii) of the invariance criteria listed above apply, a further 
partitioning of the Hamiltonian matrix is useful, since any orbital X~, on a particular 
atom A is a function only of other orbitals in the original basis on that same 
atom: 

Z'm = E A TmaZ.. (10) 
# 
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Then monocentric integrals in the original basis remain monocentric integrals 
in the new basis, and similarly for two-centre integrals and for many-centre 
integrals. 

For  the core Hamiltonian matrix H the obvious partitioning into one-centre 
and two-centre terms is suggested: 

H = H i e +  H 2c , (11) 

the elements of Hlc obeying the condition 

l e  HL-0 
unless Z. and Z~ are orbitals on the same centre, while for those of H 2c 

unless Z, and Z~ are on different centres. 
Partitioning of the electron repulsion part of the Hamiltonian matrix is 

somewhat arbitrary. The simplest approach would be to form one-centre and 
many-centre parts, the latter including two-centre integrals: 

G = G ~ + G mc (12) 

with 

= o 

for Z~ and Z~ on different centres, and 

G~ = ~A Pz~ [(#v [Za) -- �89 [ 2v)] 
2a 

for )G and Z~ on the same atom A and the summation being over all orbitals )/z 
and Z, on A. G "~ covers all other terms in G, including the two- and three-centre 
parts of the elements Gu~ with Z, and Z, on the same atom. 

The full partitioning of G '~ may be written: 

Gmc AA AA AB AA cAB ~_ ~AB (13) = Gin3 + GAB + GAB + GBc + uAC - -  "JCD 

in which for instance the matrix GAB A collects all elements involving repulsion 
integrals (#v[2a) with Z, and Z~ both on atom A, Z~ and Z. both on atom B, for 
all A and B except A = B. The other parts of G m~ may be defined similarly. In full, 
the elements of GAB A are: 

XnZ" 
a 

for X, and X, on the same centre A, different from B, and 

AA 

v ff 

for )G and Zx on different centres, A and B, respectively. 
On theoretical grounds, the two-centre terms involving only A and B, are 

likely to be the more important, and of these the a~ A would make the largest 
contribution. 

13 Theoret. chim. Acta (Bed.) Vol. 16 
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The invariance conditions apply equally to each part of the total H and G 
matrices in Eqs. (11), (12), and (13) for local orthogonal transformations. Therefore 
we can form approximations separately for each part, taking into account the 
magnitude of the contribution of that part to the whole. For example the neglect 
of a non-zero repulsion integral in G ~ is likely to be more drastic than the neglect 
of a corresponding integral in G me. The position is one of balancing up information 
lost against ease of computation gained as approximations are made subject 
to the invariance conditions. 

3.3. Zero Differential Overlap Methods 

If we orthogonalize the basis atomic orbitals by L6wdin's procedure, then the 
overlap matrix becomes a unit matrix, satisfying the first ZDO condition (Ta), 
with no loss of accuracy. Evidence has been obtained in re-electron theory [-9, 15], 
in all electron calculations on small molecules [16], and through the S-expansion 
technique (Sect. 4), that electron repulsion integrals involving products of orbitals 
on different centres become very small in the L/Swdin basis. Zero differential overlap 
methods usually begin with the neglect of such integrals, so that the Hamiltonian 
matrix is reduced to: 

F = H 1~ + H 2c + lc AA G + GBB �9 (14) 

There are now numerous ways of making further reductions, since each 
part of F of Eq. (14) may be treated quite separately, and may be subjected to 
any of the rotational invariance conditions (i) to (iii) of Sect. 3.1. We may decide 
to proceed with no further approximations, thus obtaining the "Neglect of 
Diatomic Differential Overlap" (NDDO) method [1(3], which automatically 
obeys the rotational invariance criterion (iii). We may decide to make approxi- 
mations only in G~ A, which is the most difficult and time-consuming part of F 
to calculate. This is the basis of the diatomic approximate methods (Sect. 3.3) 
in which rotational invariance criterion (i) is applied, and the many-centre ZDO 
method (Sect. 3.5), in which rotational invariance criterion (ii) is applied. Or we 
may decide to apply the ZDO assumption (Tb) rigorously to all integrals in 
H ~c, G lc and G AA, eliminating integrals involving products of different orbitals 
on the same centre. Pople, Santry, and Segal [10] have shown that this necessitates 
averaging the remaining integrals in order that the approximations be invariant 
to local orthogonal transformations, criterion (iii). The number of parameters is 
reduced to an average Coulomb repulsion integral for each atom (denoted by 
YA) and each pair of atoms (YAB), and corresponding average nuclear attraction 
integrals (VA AA and VABB), where VA BB measures the attraction of a unit positive 
charge at the nucleus of A for an electron on atom B. This is the "Complete 
Neglect of Differential Overlap" (CNDO) method. Since under the strict appli- 
cation of ZDO the elements of H 2c would become zero, H 2c is given special 
consideration here, an important matter to be considered in Part II of this series 
of papers. 

Obviously we have not exhausted the number of methods which may be 
devised, but we have characterized "Zero differential overlap methods" in general 
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as involving a basis of L6wdin orthogonalized atomic orbitals, the neglect of 
all parts of G mc except G~, and the solution of the secular Eq. (4). We now consider 
the particular possibilities in more detail. 

3.4. Diatomic Approximate Methods 

The actual theoretical evaluation of two-centre integrals is generally carried 
out relative to the conventional diatomic axis set illustrated below: 

z z B 

Y Y 

consisting of a right-handed set of axes on centre A, and parallel left-handed 
set on B, the x axes in each case being along the internuclear axis. 

Values of integrals found relative to this set are then transformed to the 
required axis set by the transformation (9), in which the basis • now refers to the 
diatomic axes. Computationally, this is a fairly simple process. 

Therefore, we may examine the magnitude of integrals relative to diatomic 
axes for the purpose of making approximations. Then all integrals in any other 
basis expressible in terms of non-zero diatomic integrals are calculated by the 
transformation. In the diatomic basis, two-centre Coulomb repulsion integrals 
(#A#AI,~,B.~,B) are an order of magnitude larger than any of the others, and fortu- 
nately are also the easiest to calculate. This leads to the Diatomic ZDO Method: 

i) We adopt the ZDO approximations 

S/tv ~ ~#v 

(#A ]M] 2B) = O, A # B 

relative to a diatomic axis set. 
ii) All monocentric integrals are included. 
iii) Relative to a diatomic axis set, only two-centre Coulomb-type integrals 

are included. These refer to nuclear attraction integrals (#A[ I?B I #A) and Coulomb 
electron repulsion integrals (#A#A[2B2B). 

iv) Integrals relative to any desired choice of local axes are then generated 
from the equation: 

(mAlYllna) = ~ rm, r,,f#Arfll#a) 

Such a procedure is intermediate in complexity between the NDDO and 
CNDO approximations. It removes the more difficult integrals necessary for an 
NDDO calculation, while retaining directional qualities lost in the CNDO 
approach. It is an example of case (i) of the rotational invariance criteria, in which 
the approximations apply only for the standard set of diatomic axes. 
13" 



182 R . D .  Brown and K. R. Roby: 

3.5. The CNDO and N D D O  Approximations 

The invariance conditions for the CNDO approximation mean that only 
average nuclear attraction integrals, V2 A and V~ B and electron repulsion integrals 
?g and YAB, need be found for each atom and each pair of atoms present in the 
molecule. As mentioned in Sect. 3.3, special treatment is given to the non-zero 
elements of H at, which are usually called resonance integrals and given the 
symbol AS ritZ" If, as in Ref. [10, 12], direct proportionality of the resonance integral 
to the overlap integral prior to orthogonalization is assumed: i. e.: 

H ~  = f l~  = kABS,x (15) 

then the constant of proportionality kAB should depend only on the atoms A 
and B themselves, and not upon the particular orbitals Zu and Zx involved. However, 
better theoretical formulae for the resonance integrals will be set out in Part II 
of this series, and examined in practice in Part III. The Hamiltonian matrix 
elements (6) become [10]: 

F ~  i = a. + (PAA -- �89 ?h + ~ PBB?A., (16) 
B#:A 

- 1 
- - "  : P ~ v T A  , (17) 

- -  ~P#~.TAB (18) 

where, for simplicity, the particular centre A or B to which the orbitals belong is 
indicated on the left only, and PAA = total electron population on A = ~A pu,. 
In the above 

a, - H,I~ = Coulomb integral for Z, on atom A. 

Although the CNDO approximation may be extremely useful as a rapid 
way of obtaining semi-quantitative information, a number of limitations of the 
method are immediately apparent. The procedure of taking an average integral 
for each atom and each pair of atoms present leads to a loss of information content 
with respect to such matters as the relative importance of, say, s- and p-orbitals 
on the same centre. When d-orbitals are to be included, this problem becomes 
acute, since integrals involving these orbitals are quite different in magnitude 
from those involving s- and p-orbitals, and in using an average integral these 
differences are glossed over. Leaving out monocentric exchange-repulsion 
integrals (#vlv#) means leaving out quantities of up to 4-5 eV and the failure 
of CNDO in some cases to give singlet-triplet splitting in the calculated electronic 
spectra. There are, then, deficiencies inherent in the method, which may be 
overcome to some extent by  a judicious choice of parameters, but which mean 
that the limitations of the method and even qualitative conclusions drawn from 
it have to be carefully considered. 

Some of these deficiencies may be corrected by requiring invariance of the 
approximations to rotations of local axes only (invariance criterion (ii)), rather 
than to general local orthogonal transformations, and using the separation of 
the G matrix in Eq. (12). We maintain the average two centre integrals 7AB and 
V~ ~, an approximation that is not too drastic, even when d-orbitals are included, 
in the cases studied. Under a rotation of the local axes on atom A, say, the s-orbitals 
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remain unaffected, while the three p-orbitals transform among themselves, as do 
the five d-orbitals. Invariance requirements are met if we use an average integral 
for each set of orbitals, Ms, Mo and Mg. Then, taking the example of p-orbitals 
only, we may put 

<p[)~/[p'> = M~pp ,  (19) 

and we have for instance an average Coulomb repulsion integral per set of orbitals 
and pair of sets on each centre, 7ss, 7~, ?~a, V~p, ?sa and 7rg" The bar indicates 
that an average integral is required, while in the other cases there is only one 
such integral (as for 7 J  or the integrals have equal values (e. g. Lp~ = ?~p, = ?~p,). 
If a new basis of hybrid orbitals is chosen, all monocentric integrals with con- 
tributions from the integrals given here would have to be included. The significance 
of this modification of the CNDO approximation is that important distinctions 
between s-, p- and d-orbitals on the one centre are maintained in the calculations. 
It will be called the "rotational invariance only CNDO method". 

In the NDDO approximation [10], the distinction between overlap charge 
densities #AVA and #A2B is recognised, all integrals containing the former being 
included while those containing the latter are neglected. For repulsion integrals 
this means that all (/~vl2o-)--0 unless )G and Xv are on the same centre A and 
)~ and Z~ are the same centre B, which may equal A. Then the Hamiltonian 
matrix elements become: 

F~, A = c~, + �89 + ~APw [(##[ VV) - -  �89 V#)] + ~ }"BP~.(##I2G). (20) 
vr  B l,~ 

= + r v#) - �89 vv)] + F. F?  (21) 
B ~,<; 

F2~ = flux - �89 Z A Z "  P~(#v [).~r). (22) 
v ff 

The NDDO approximation seems to overcome all of the more serious de- 
ficiencies inherent in the CNDO approach. In practice it is still quite complex 
and time-consuming. Some idea of the advantages and problems of the method 
follow from a consideration of the number of unique repulsion integrals for an 
all valence electron calculation on tetrahedral oxyanions, in which s-, p- and 
d-orbitals on the central atom, and p-orbitals only on the oxygen atoms are used: 

No. of unique repulsion integrals in full calculation = 26,796, 
No. of unique repulsion integrals in NDDO calculation = 2,415, 
No. of unique repulsion integrals in CNDO calculation = 15. 

There is a dramatic reduction to be gained in doing an NDDO calculation 
rather than a full calculation. However, the number remaining is still considerable, 
especially when compared with the CNDO total. Admittedly some of these will 
be zero by symmetry, depending upon the particular case. Nevertheless, the 
calculation of all of the non-zero integrals is time consuming, and the size of the 
system that can be treated by an NDDO method becomes limited by the computer 
store available. 
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3.6. The Many-Centre Z. D. O. Method 

By recognizing the difference in transformation properties between one- 
centre and two-centre repulsion integrals, a considerable simplification of the 
N D D O  method becomes possible. After the N D D O  approximation, the full 
Hamiltonian may be written: 

F = H + G ~c + GB AA (23) 

each part of which may be examined separately. All integrals in the matrices 
H and G 1~ are fairly readily evaluated theoretically, while those in G AA present 
the most difficulty. The many-centre ZDO method results if the Z DO approxi- 
mations are applied to all many-centre, including two-centre, repulsion integrals, 
while core elements and one-centre repulsion integrals are calculated without 
using a ZDO approximation. Then the conditions for invariance to local ortho- 
gonal transformations are automatically satisfied for H and G 1~, and we may 
stipulate invariance to rotations of local axes (criterion (ii)) for approximations 
of G~ A as being the most useful case having least loss of information in practice. 
Thus the many-centre ZDO method consists of: 

i) No ZDO approximations are made for core elements (apart from core- 
valence electron separability), or for monocentric repulsion integrals. By symmetry, 
only monocentric Coulomb (##l vv) and exchange (l~vlv#) repulsion integrals 
are non-zero. 

ii) The ZDO approximation is rigorously applied to all many-centre repulsion 
integrals, including two centre repulsion integrals. 

i.e. (#vl2o-) = 0 unless # = v, 2 = tr. 

iii) In order to satisfy the conditions of invariance of (ii) to rotations of local 
axes, the remaining two-centre Coulomb repulsion integrals are averaged per 
set of orbitals on each centre. That is we have the average Coulomb repulsion- 

.AB .AB .AB .AB integrals between two-centres: / ~ ,  Ysv, Yp~,/~p, etc. (For invariance to any 
local transformation, this procedure would be replaced by taking an average 
repulsion integral per pair of centre, TAB-) 

The Hamiltonian matrix elements become 

F~,au A = H~,. + �89 + ~A Pw [(/t/t[ vv) .  �89 I v#)] + Z ~B P~x?gX, (24) 
v:~# B~A 2 

F~av A = H,.. + P,~ [3(/tv I v/t) - �89 [ vv)]. (25) 

- ~PuxY~1 (26) 

where 7~ is the average Coulomb repulsion integral over all orbitals Z, and X~ 
having the same I quantum numbers as X, and Zx, and being on the same respective 
centres. 

The advantages of the many-centre ZDO method are that it eliminates the 
more difficult integrals of the N D D O  approximation while promising results 
of the same order of accuracy, provided that two-centre repulsion integrals 
(/~AVAI2B(rB) are small, as seems to be the case. The savings of computer time 
and space are considerable for larger systems. Failures of the C N D O  approxi- 
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mation in distinguishing properly between orbitals on the one centre and in 
neglecting one-centre exchange repulsion integrals are eliminated. In addition 
the core element H 2A, which turns out to have non-negligible values, is included, 
and there is the possibility of calculating all core elements purely theoretically. 

One of the main ideas of the many-centre ZDO method, that of including 
one-centre exchange integrals, has been independently proposed in recent papers 
by Dixon [17] and by Pople, Beveridge, and Dobosh [18]. However the many- 
centre ZDO method differs from the methods of these authors in the full evaluation 
of core Hamiltonian elements, in the use of average two-centre Coulomb repulsion 
integrals per set of orbitals of the same type on each centre, and in the way the 
parameters are obtained (see Part II of this series of papers). 

The many-centre ZDO method has grown out of extensive attempts to apply 
the CNDO and NDDO approximations to systems having d-orbitals on at 
least one atom. It is here that the CNDO method breaks down in many ways, 
while the NDDO method is most difficult to apply. We would expect the many- 
centre ZDO method to find most of its application in systems too large to be 
treated by the NDDO method, either because d-orbitals are included or the 
molecule contains too many atoms. It is particularly appropriate for transition 
metal-complexes and for all-valence electron calculations on larger organic 
molecules. 

3.7. Approximate Full Overlap Methods 

Full overlap methods are those in which the overlap integral, and integrals 
involving two-centre charge distributions, are included, the secular determinant 

IF - S~l = 0 

having to be solved. Ways of handling the difficult many-centre integrals are 
now required. 

One way is to use the Mulliken approximation [17], in which each two- 
centre charge distribution is replaced as follows: 

A B S# 2 X~, )~ = ~ -  (ZuZ~, + )~Z;~). (27) 

Ruttink [13] and Mann6 [18] have shown that the Mulliken approximation is 
invariant to local orthogonal transformations only when average one- and two- 
centre integrals are used, i. e. 

(~A I~/I'~B> = ~ -  [MAA + MBB], (28) 

(#A vB 12c ao) - S ~ S ~  4 [TAC + YAD + YBC + ~BO]" (29) 

Since these are also the C N D O  conditions, the Mulliken method consists of the 
CNDO integrals as already discussed, plus many-centre integrals calculated 
via the Mulliken approximation. Repulsion integrals that contain the product 
#AVA, •# and :g~ being different orbitals, are neglected. 
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From the fact that atomic orbitals on one centre may be expanded without 
approximation in terms of a complete set of atomic orbitals on another centre, 
Ruedenberg [19] in 1951 derived the exact expansion: 

__1 A (#AI~/12B)--g{~ S~(#II~/IIv)+ ~BS~,(21/V/la)} (30) 

expressing two centre charge distributions in terms of one-centre distributions. 
For truncated sets of orbitals, as used here, this expansion is an approximation, 
and has the required invariance properties, provided that all integrals containing 
/AAF A products are included [13, 19]. Since these are also the NDDO conditions 
the Ruedenberg method consists of the NDDO integrals as already discussed, 
together with the addition of all other integrals via the Ruedenberg approximation. 

3.8. Relationship of Approximate Methods 

The relationship of the all-valence-electron methods described in this paper 
is illustrated in the Table. The zero differential overlap methods are assumed to 
be in a LSwdin basis of atomic orbitals, while the Mulliken and Ruedenberg 
methods are assumed to be in a full overlap basis, and the secular determinants 
to be solved are 

in the first case, and 

which may be rewritten 

in the second case. 

IZF- el = 0 (31) 

IF - Sel = 0 

IS-~FS - ~ -  el = 0 (32) 

In the second part of the table the methods are considered from the point 
of view of their inclusion or otherwise of electron repulsion integrals. 

Table. Relationship of all valence methods 

The Hamiltonian Matrix 
FCNDO ~ FMany-eentre ZDO ~ FNI)DO -- XF (LSwdin Basis) 
F Mullikeri .~- F Ruedenberg ~- F Full overlap basis 

Inclusion of repulsion integrals 
Method C N D  0 ~ M ulliken 
Electron Average 7A, 7A~ + 
Repulsion YA, YAB Many-centre 

Integrals Many-centre Z D O  
all monocentr ic  
+ orbital average 
two centre 

1 
N D D O  ~Ruedenberg 
all with one all 
centre charge . integrals 
distributions 
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If some appropriate averaging of Coulomb electron repulsion integrals is 
explicitly for each atom and each pair of atoms present, then the conventional 
CNDO method or the "rotational invariance only" CNDO method is obtained 
(Sect. 3.5). 

We may now proceed in either of two ways. On relaxing the condition of 
average Coulomb repulsion integrals by including all one-centre integrals and 
two-centre Coulomb integrals averaged per set of orbitals, we have the many- 
centre ZDO method. By further including all two-centre integrals involving 
monatomic charge distributions, we have the NDDO method. 

On the other hand the Mulliken method is reached from CNDO by allowing 
many-centre integrals not involving ]2Al~ A with #A • VA to be included. 

Finally the Ruedenberg method includes all other repulsion integrals not 
evaluated in the NDDO method on the one hand, and in the Mulliken method 
on the other. 

Because of these relationships, some important questions may be answered 
by a comparison of results obtained with the different methods: 

i) What are the limitations of the zero differential overlap type methods 
in their various forms? Are such methods good enough for the predictions of 
experimental properties? 

ii) Which of the types of electron repulsion integrals are important in all- 
valence-electron calculations? Is it reasonable to neglect any or all of many- 
centre integrals involving #AVB, A r  many-centre integrals involving ~AVA, 
#A ~ VA ; one-centre exchange integrals? 

iii) What is the effect of various approximations to ZDO core elements? 
In Part III, we present some comparative calculations on the sulphate anion 

which attempt to answer these questions. Meanwhile we may utilize an S-expansion 
technique to evaluate the possible accuracy of the approximate methods so far 
described. 

4. Evaluation of Approximate Methods: S-Expansion Technique 

To examine the significance of neglecting various integrals according to the 
NDDO, many-centre ZDO and CNDO methods it is expedient to use the S- 
expansion technique developed by Fischer-Hjalmars for n-electron systems [9], 
1-22]. The technique is based on earlier work by Lrwdin [23]. Here we generalize 
the technique for the case where all of the valence electrons and more than one 
orbital per centre in a molecular system are to be specifically treated, and we 
obtain a justification of the ZDO approximations made in section 3, together 
with estimates of the likely accuracy of each of the ZDO methods and further 
information on their relationship to the full overlap methods. Some of the formulae 
derived may be used directly in the estimation of elements of the Fock Hamiltonian 
matrix ~F. This analysis starts with the Ltiwdin transformation for one-electron 
operators: 

"~M = S - ~ M S  -~ (33) 

and the binomial expansion of S-~: 

S -~ = (1 + d) -~ = 1 - �89 + 3d2 - ~-rd 3 q---. (34) 
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where 1 is the unit matrix and d is the overlap matrix but with zero diagonal 
elements. 

We may now proceed to examine the elements of the Hartree-Fock Hamil- 
tonian ZF by following the S-expansion to the first order and then to the second 
order in d. 

4.1. Expansion to the First Order in Overlap 

To the first order in the overlap integral 

A M = S-~MS- �89  

= (1 - �89 M(1 - �89 + O(S 2) (35) 

= M - � 8 9 1 8 9  O(S21. 

This wi!l hold for core elements ~M.~, and for one-electron charge distributions 
~f2.~, where the repulsion integrals may be written: 

~(#v 12r = (~f2.v I xf2x~) (36) 

The elements of the matrix ~M in terms of those in the full overlap basis M, are: 

�9 ~M AA = M - ~ ~-~B S~,xM.z + O(S 2) (37) ## - -##  
BCA 2 

~M AA = M.v - �89 E ~B [M.~S~ v + S.zMx~I + O($2), 
B:#A ~, (38) 

- M~a S~_ (M~,. + M~) - �89 ~ ~c [M..S,,z + S.,,M.~] + O(S 2) (39) ~MAB 
# 2  - -  

C a~a#,Z 

noting that d. .  = 0 and d.~ = S.~. 
In the LSwdin basis, then, the core elements ~% and zfl. v become: 

% = ~ -  y~ ~ s.~.~ + o(s2), (40) 
B:#A 2 

~.flAA = / ~  __�89 ~ 2 a  [flu.~S2v _[_ S,vfl2v ] + O(S 2) (41) #v rgv 
B:#A 3. 

~,flAB __ S# .;t __ l  2 C  .4 - fl.x f -  [eu + ~ ]  ~ [fl.~S~ + S~,,,fl,,z] + 0($2) �9 (42) 
C ar 

Usually both e.  and fl.x are negative, and therefore the following relationships 
are to be expected: 

I~.1 < Is.I, 
I~/~.A~I < I / ~ l ,  (43) 
2 AB AB 

In each case, the magnitude of the core element in the LSwdin basis is expected 
to be less than that in the full overlap basis. 

Interesting results appear in the case of the repulsion integrals assuming 
expansion in the overlap integral to the first order and approximate validity 
of the Mulliken expression (28). Using the different classes of these integrals 
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defined in Eqs. (12) and (13), it is readily shown that only the elements of GAA A 
and GA~ are non-zero to the first order in S and further: 

For GAAAA, 2(~tAVA ]~A0"A) = (/2AVAI2AtTA) + 0($2)  , (44) 

for  AA GBB, ~(/tAVA ]2B trB) = (#AVAI2B %) + O ($2). (45) 

The non-zero integrals here are those included in the NDDO approach, 
and partially included in the many-centre ZDO approach and CNDO approaches. 

Special factors that now need to be taken into account are that the overlap 
integral may be comparatively large in inorganic systems, that the core elements 
will be large because of large core charges on the atoms, and that sums over 
atoms and orbitals are likely to be large because each atom contributes a number 
of valence orbitals to the system. 

An expansion to only the first order in S may therefore involve some major 
approximations. For instance if S,~ has a value of 0.3, fl,~ a not uncommon value 
of - 3 0  eV, then terms of the size fl,~S]~, 2-3 eV, are being neglected, and if 
included, wou ld  arise as part of a sum of a number of terms of this size. The 
errors become larger the larger the core charges on the atoms, the more atoms 
there are in the molecule, the more orbitals each atom contributes to the molecule 
and the larger the overlap integrals. 

This suggests the need to examine terms to the second order in overlap and 
the need to take special care in calculating core elements. The procedure of 
finding the core matrix in a full overlap basis and transforming to the L~Swdin 
basis for use with the repulsion integral approximations of the differential overlap 
methods may prove to be a necessary step. 

But even the repulsion integral approximations bear examination. Coulomb 
repulsion integrals may have values of around 10 eV, and for an overlap integral 
of 0.3, terms of about 1 eV are being left out to the first order in overlap. Hence 
the importance of comparing the differential overlap methods with those in which 
all integrals are included in some way, such as via the Ruedenberg approximation. 

4.2. Expansion to the Second Order in Overlap 

Complex expressions are obtained if the expansion is carried out to the 
second order in the overlap integral S, where now: 

aM= [ 1 - � 8 9 1 8 9  2] 
(46) 

= M - � 8 9  1 3 2 + ~[=Md + d M d  + ~d2M] + 0($3). 

Individual elements then take the forms 

avsp 
z+u (47) 

+ � 8 8  3 [~M.~S~S~ u + S .~M~S.  u + ~S.aSz~M~ u] + 0($3)  , 
2~.p. r162 

~M AA = M . v  - �89 

"+u,~ (48) 
+ S.~So~M~] + O(S3), 
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.•MAB ~ 1 ~S~,.S~.~(M.. + M;~) 
�9 ~ . z  (49) 

1 + ~S.,,S~,~M~,, - (M.,.S,~ + S.,.M,.z) + 0(S3). 

These expressions apply to the core elements 4_ ~ohA and ~t~aB respectively, 
and to the charge distributions ~f2.., ~f2.~, ~f2.~. When the various repulsion 
integrals are formed from these charge distributions, complex expressions are 
obtained, and may be simplified by using the Ruedenberg and Mulliken approxi- 
mations. 

Under these conditions integrals belonging to GA~, G ~  and G]~ may be 
neglected to the second order in overlap. However other repulsion integrals, 
involving one-centre charge distributions, are non-zero: 
Three centre, G~A: 

2(]2A V A 12BO-C) = -- (#V 120-) + �88 ~-~A SLaSaa 1,3(jdV [/~/~) ..~ 3(j../F lifO. ) _}_ (#V l a a ) ]  

- (50) 
+ �89 Y, Y? ~s~ s~, 1,(#v I~) + (~  IO.O.)- 2(~ L dd)]. 

D CA, B,C d 

Involving only small differences between the first and second terms, and 
within the third term, these integrals are likely to be very small in magnitude, 
and to take much smaller values than they would in a full overlap basis. 

On the other hand, two-centre integrals are given by: 

G ~ :  ~(~A VA I;~B O.B) = @V [ ,~O-) + 81-- Z Z c {S~S~ I-(#v [ ;~'~) + (~v I O.O9 
c ~ ( 5 1 )  

- 2(#v I cc)]+ S,,cS. E(P~ I.~o-) + (vv I,~o-)- 2(cc120-)] } + O (S 3) 

where the sum is over all atoms in the molecule, including A and B themselves. 
Again the terms in the square brackets will approximately cancel, and anyway 
are multiplied by very small numbers (~$2). If we write (p#122) as ?~  for con- 
venience, two centre Coulomb repulsion integrals become: 

A 1 2 ~-'~B__l~,2 
"~(/2A#A [ '~B/~B) = ~2/z2 -[- 2 "4S,~a 1'~uZ - -  ~#a] + / ,  4 ~#b E~p_,~ - -  ~Ab] 

a b (52) 
z1,S~(~.~- ~.~) + S.~(~.~- ~,~)] + O(S~). 

CCA,B c 

Since one centre Coulomb repulsion integrals (~a, Yah) are in general greater 
than two-centre Coulomb repulsion integrals, and since in many cases the con- 
tribution from the last sum, which involves only differences between two-centre 
integrals, will be small, we might expect z .as 7~a to be less than ~ y,~, as found in the 
cases studied by McWeeny 1,151. 

Again differences between the values of one-centre exchange repulsion integrals 
in the LSwdin and full overlap bases are small: 

X(#AVAIVA~A)=@vlv~)-- ~ YT~�89 ~) (53) 
BCA ). 

indicating that Z(#AVA[VA/Za) will be smaller than (#vlv#). The reverse is the 
case for one-centre Coulomb repulsion integrals: 

,t(/,tA,UAIVAVA)=?,,+ .~ ~BX 2 2 - S ~ ( ~ . ~  - ~ . ~ ) ]  + zl-S.~(y.~ 2;~x) + O(S 3) (54) 
B#A 2 
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and 

~(#A#A[#A/~A) = Y.U + ~ Z B �89 Yux)" (55) 
BCA 2 

In each case the second term will be positive and ~Tu~ > ?,~ in general, also agreeing 
with the results of McWeeny [15]. 

The conclusions drawn in the expansion to the first order in overlap are 
reinforced when the expansion is carried out to the second order. In particular 
the care necessary in the evaluation of core elements is emphasized by the Eqs. 
(47)-(49). The assumptions 

~ ~ ~u, (56) 

xflu ~ ~ fl.~ (57) 

do not seem justified. However the repulsion integral assumptions: 

2(~/AVB ] ~CO'D) ~ 0, A r B, C r D (58) 

and 
~(#A VA 12B O-B) ~ (#A VA 12B aB) (59) 

do receive some justification (see Refs. [16] and [27] for further discussion of 
this point). For the latter case, other terms in the expansion in general are of the 
order of S 2, and involve small differences. 

4.3. Equivalence of ZDO and Full Overlap Methods in Terms of Overlap 

We have already shown (Sect. 3.7) the equivalence in terms of the invariance 
criteria of the CNDO and Mulliken methods on the one hand, and the NDDO 
and Ruedenberg methods on the other. An equivalence in terms of overlap may 
now be readily derived from Eqs.(39) and (49) respectively. Thus, applying 
Eq. (39) to charge distributions, taking averages as required by the invariance 
criteria, and making the CNDO approximation (XM2~ = 0) we obtain: 

M2~ = ~ -  (M~ + Mxx ) - 1 Z • [Mu~S~ + Su~M~z] + O(S 2) (60) 
CCA, B a 

This equation shows, however, that both terms in the final sum are of the 
order S 2 (since C ~ A, B), and hence we obtain the Mulliken approximation, 
Eq. (28), to the first order in overlap. 

Similarly, beginning with Eq. (49) [or Eq. (39)] and making the NDDO 
approximation, one finds that the NDDO and Ruedenbcrg approximations for 
charge distributions are equivalent to the first order in overlap. If Eq. (49) is 
used, one may further show that the NDDO and Ruedenberg approximation 
as applied to repulsion integrals (products of two charge distributions) are equivalent 
to the second order in overlap. 

4.4. Conclusions and Discussion 

The S-expansion technique has shown how the CNDO, many-centre ZDO 
and NDDO methods may be derived and justified in a basis of orthogonal atomic 
orbitals. The following general results have been found: 
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i) The zero-differential-overlap assumptions for repulsion integrals apply 
in a L6wdin basis, and non-zero integrals may be evaluated using normal, rather 
than LiSwdin, atomic orbitals. 

ii) Core elements may be evaluated theoretically to form the core matrix H, 
followed by a transformation of H to the L6wdin basis for use with the above 
repulsion integral approximations: 

~H = S - ~ H S  -~ (61) 

iii) Alternatively the expressions (40-42) or (47-49) may be used to evaluate 
core elements theoretically in the L/Swdin basis to the first or second order in 
overlap, respectively. 

iv) Provided that the core elements have been calculated correctly, the NDDO 
method is at best correct to the second order in overlap while the many-centre 
ZDO and CNDO methods are at best correct to the first order in overlap. That is 

F NDDO = ;~F -}- O(S3) ,  (62) 

FMany-eentre ZDO ~ FCNDO ~,~ XF q- O($2) . (63) 

Errors are likely to increase the larger the molecule, the more orbitals per 
centre that are included, and the greater the overlap between participating orbitals. 

Note that the CNDO method involves approximations in addition to those 
necessary for its derivation correct to the first order in overlap, namely, the neglect 
of one-centre exchange repulsion integrals and the averaging of the remaining 
integrals. Hence, the Many Centre ZDO method is the true first-order-in-overlap 
method. 

It should also be noted that we have not, in the present paper, attempted to 
justify the additional assumption of valence electron core electron separability. 
Preliminary investigations in this direction using the approach of Mann4 [20], 
have been set out elsewhere [3]. 

The general results found here are in substantial agreement with the conclusions 
of Cook, Hollis, and McWeeny [16, 24], based on their numerical comparisons, 
and in some respects, with those of Dahl [25], based on an analysis of the CNDO 
method. Numerical comparisons of the various methods obtained in our own 
laboratory will be presented in Part III of this series of papers, and provide 
further support of the conclusions derived in this paper. Initial applications of 
the NDDO method to inorganic systems by Brown and Peel [26], Brown and 
Roby [3], and Roby and Sinano~lu [27] confirm the promise of this type of 
approach. 

The invariance criteria and the S-expansion technique may be used to investi- 
gate the theoretical basis of other approximate molecular orbital methods [14, 
28-38] presently in the literature. Such a critique has been given elsewhere [3]. 
In other papers of this series, (Parts II, III, and IV) we develop other criteria for 
the reliability and limitations of approximate methods and parameter schemes. 

All valence electron calculations are very sensitive to the way in which the 
parameters of the particular method used are determined. The next main facet 
(Part II) of the molecular orbital theory for inorganic molecules is, then, the 
development of general schemes for parameter determination within the scope 
of the theoretical framework and the all-valence-electron methods outlined here. 
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